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1. Survey prior work on reward shaping for multiagent systems, with a focus on problems with
sparse and/or multiple rewards.

2. Survey prior work on the impact of learning on leader/follower systems for large multiagent
systems and swarms.

3. Provide three research directions where reward shaping can be used in large leader/follower
systems. At least one research direction should focus on algorithmic contributions and one
on implementation/hardware contributions.

4. Discuss the broader societal (e.g. ethical, economic, policy, social, regulatory) implications
of multi-robot systems operating under uncertainty in terms of future impact. Note that
addressing this question requires including benefits, challenges, and downsides of the proposed
work.
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1 Introduction

Intelligent swarm systems offer advantages in warfare [116, 123], transportation systems [5, 29, 124],
and addressing the climate crisis [49, 67], where large numbers of agents must coordinate to achieve
complex coordination on tasks with non-trivial solutions. This is especially helpful when a system
must perform multiple actions in multiple locations simultaneously. Swarm algorithms focus on
getting intelligent swarm behaviors through hand-designed simple rules for local swarm interactions
[83, 111], making it difficult and time-consuming to design algorithms to achieve a desired overall
swarm behavior. Reward shaping in multiagent learning is focused on getting individual agents in
a system to learn to achieve a system objective [3, 4], which starkly contrasts the approach of these
hand-designed agent behaviors in swarms. Unfortunately, reward shaping methods do not scale
well to coordinating large numbers of agents on complex tasks [107]. We survey literature from
both of these areas in order to synthesize research directions that can leverage both the intelligence
learned through reward shaping in multiagent learning as well as the large collective capabilities
of a swarm. We conclude by discussing how these systems might impact warfare and surveillance,
transportation systems, and the climate crisis.

2 Background

2.1 Intelligent Swarms

Swarms are composed of a large number of agents taking independent actions based on local
observations and simple rules [83, 111]. The intelligence in these systems emerges from many local
interactions, but we consider cases where the swarm has an explicit system objective that must be
achieved. We refer to these systems as “intelligent swarms” because we are going beyond defining
simple rules that result in emergent intelligence, and instead giving the swarm an explicit objective.

Emergent intelligence is advantageous in its robustness to individual agents failing [45], and
previous studies have found local rules that result in effective swarm behaviors for various domains
[15, 83, 137]. However, this approach requires meticulously designing and testing hand-coded rules
to achieve the desired behavior. To best leverage the swarm'’s collective capabilities, a subset of the
swarm can interact based on simple rules described by prior work, and another subset of the swarm
can learn how to influence the rest of the swarm to collectively achieve complex tasks. This gives
us the benefit of a large collective without the necessity of hand-coding every agent’s behavior.

2.2 Multiagent Learning

In multiagent learning, multiple agents operate in a shared environment with the goal of optimizing
system feedback [17-19, 23, 76, 102]. To motivate the learning methods we explore, consider an
underwater observation task where multiple robot fish must coordinate to collect observations on
scientific points of interest (POIs): coral and seaweed. This task is illustrated in Figure 1. Each
robot fish receives its own local observation of the environment, maps that to an action using its
individual policy, and takes that action in the environment. We can consider the collective state
of all the agents in the system as a “joint-state” or “system state”, and collective actions as a
“joint-action”. Each agent receives the system feedback, or system “reward”, as feedback.
Multiagent learning can be formalized as learning a joint-policy for a Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP) [73, 89, 120], as opposed to single agent learning
which is usually formalized as learning a policy for a Markov Decision Process (MDP) [39, 65, 140].
A Markov Decision Process is a 4-tuple composed of states, actions, transition probabilities, and
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Figure 1: Multiple robot fish must coordinate to collect observations on coral and seaweed. Aspects
relevant to multiagent learning are explicitly called out.

rewards. Each state is Markov, meaning that the next state is only dependent on the current state,
rather than a history of states. In a Dec-POMDP, the underlying system state is Markov, but it is
decentralized among several agents where each one can only observe a portion of the system state,
and must act independently from other agents. This makes it so that many concepts from single
agent learning partially transfer into multiagent learning, but not entirely.

There are distinct challenges that arise in multiagent learning. Primarily, there are the chal-
lenges of other agents’ learning exacerbating environment stochasticity [57-59], agent credit assign-
ment [55, 106, 119, 145, 150], reward sparsity [42, 74, 107], and balancing multiple reward signals
[68, 101]. From the perspective of a single agent, the exploratory actions of other agents cause
unpredictable changes in the environment. Additionally, each agent only observes a portion of the
system state, making it difficult to map an observation to the best action to take as one observation
can represent various distinct states. The agent credit assignment problem is concerned with how
to distill system feedback into feedback for individual agents based on an individual agent’s contri-
bution to the overall system’s performance. Since the system feedback captures the performance
of all agents in the system, this signal is quite noisy in capturing the contribution of any particular
agent — in fact, most of this feedback is capturing the performance of the other agents.

Reward sparsity arises from tasks that require tight coordination [107], where agents must
discover a sequence of joint-actions together before receiving any feedback. Rewards may also be
inherently sparse based on the system objective [142, 143]. In the underwater observation task, the
objective could instead be to find a stingray, in which case the system would only receive positive
feedback once a stingray was found, and no feedback otherwise, meaning that most actions taken
by the robots would have no associated instantaneous reward. A multiagent system may also have
multiple objectives, meaning that the system must learn to make tradeoffs between multiple reward
signals on top of associating actions with these different signals. In the underwater observation task,
these reward signals could each give information about different POls, power efficiency, swimming
speed, and so forth depending on what was important to the system.

Different learning algorithms can be used to learn a joint-policy. Multiagent Reinforcement
Learning (MARL) learns to associate observation-action pairs with expected values, and uses this
to learn a joint-policy [6, 53, 72, 73, 98, 119, 146]. Cooperative Coevolutionary Algorithms (CCEAs)
aggregate the system rewards into a system fitness or system “evaluation”, and evolve each agent’s
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policy alongside other agents’ policies in order to learn a joint-policy [4, 48, 69, 110, 148].

Some multiagent systems are competitive, in that different agents seek to maximize an individual
reward signal and must learn to compromise with other agents [76, 121]. Learning in these systems
focuses on finding a Nash Equilibria, which is an outcome in which no agent benefits from changing
its individual policy, rather than focusing on maximizing a system reward signal. We will focus
primarily on cooperative multiagent systems as they are the most relevant to our work.

2.3 Multireward Learning

A swarm might have objectives that are not well captured by a single reward signal, especially
if these systems are being used in long term deployments. Decomposing the reward signal into
multiple rewards necessitates the use of multi-objective optimization methods [68, 127]. These
methods focus on learning a Pareto front, which in this case is a set of policies that represent
the best tradeoffs between multiple objectives [85, 86, 144]. A policy is on the Pareto front if a
change to that policy would make it less optimal with respect to at least one objective. Consider
the underwater observation task in Figure 1. If these robot fish are deployed with a single reward
signal, then we must assign a value to observing coral and a value to observing seaweed in order
to combine feedback for both types of observations into a single reward signal, inherently baking
a tradeoff directly into our reward signal. In a long term deployment, the mission objective may
change, and a virus killing off coral reefs could make coral observations far more valuable than
seaweed observations. If we had taken a multiobjective approach, then we could simply change
where along the Pareto front we are selecting policies. In the single reward case, we would have to
retrain our system entirely with a new reward function that has the new tradeoff baked in.

2.4 Counterfactuals

Counterfactuals are used quite heavily in reward shaping in multiagent systems. A counterfactual
is simply something that is counter to the facts [47, 71]. These are useful in multiagent systems
for computing counterfactual system feedback to “what if” scenarios [3, 4]. Consider an example
from the underwater observation task. An agent may have taken a sequence of actions to observe
a seaweed POI, but this may not have been the most useful for the system objective. We can
rerun the simulation with a counterfactual agent that swims to the nearest coral POI in place
of this agent, and receive counterfactual system feedback. By comparing the actual feedback
with the counterfactual feedback, we can determine whether swimming to the nearest coral would
have actually been more helpful for the overall system. The use of counterfactuals improves the
performance and adaptivity of learned joint-policies when leveraged appropriately [3, 4, 119, 148].

3 Reward Shaping For Multiagent Systems

Reward shaping in a multiagent learning context focuses on methods that take the system re-
ward signal and modify it for individual agents, either adding information or removing noise in
order to make this reward signal better suited for learning without modifying the target task
[3, 4, 7, 31, 33, 85]. Reward shaping is related to, but distinct from reward design and reward
approximation. Reward design, sometimes also called “reward shaping” [40, 66], focuses on how to
turn the requirements for a target task into a reward signal that makes this task learnable. Reward
approximation focuses on how to approximate the reward signal to get a denser reward signal or
to speed up the reward calculation via the approximation.
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While most reward shaping methods are designed to work specifically with system rewards,
some shaping methods have equivalent fitness shaping techniques that extend them to cooperative
coevolutionary algorithms [4, 25]. These techniques generally help agents learn better policies, but
are especially useful when agents learn with sparse rewards, or multiple rewards. The pains from
reward sparsity can be partially alleviated through reward shaping methods that add additional
information to the reward signal. Similarly, the trade-offs between multiple reward signals can be
made more apparent when those reward signals have been cleaned of noise.

Shaped rewards take the form of the following equation, where G, our system feedback, is
modified with the addition of a shaping term F' in order to calculate the shaped reward.

T'shaped = G(Sa a, S,) + F(Sv S,) (1)

Equation 1 is specifically focused on shaping rewards, so G and F' are functions of states and
actions. Similarly, we could think of G and F in terms of sequences of states and actions for
evolutionary algorithms. We explore different reward shaping techniques, which focus on adding
information, removing noise, or a combination of both in order to create a better learning signal.

3.1 Adding Information

Adding information through reward shaping is particularly well suited to address reward sparsity in
multiagent systems [32, 112]. By adding information through the shaping term, we can drastically
reduce the time agents in the system spend trying random actions with no feedback, and instead
provide agents with “stepping stone” rewards that eventually lead to the system reward.

When adding information to an agent’s reward signal through reward shaping, it must be done
with caution so as not to modify the actual task as represented by the original reward function.
Unchecked reward shaping could lead to a sort of malicious compliance from a learning agent [108].
Consider if we wanted to add a shaping term to the underwater observation task rewarding agents
for staying near one another to better meet coupling requirements for POIs. Agents could now
exploit that shaped reward and learn to just find other agents rather than going to POlIs.

3.1.1 Potential Based Reward Shaping Framework

Potential Based Reward Shaping (PBRS) addresses the malicious compliance pitfall [7, 31], and
acts as a framework for many of the following methods that add information to the reward signal.
This framework allows the injection of information into an agent’s reward while ensuring that the
resulting shaped reward is policy invariant. Policy invariance means that the optimal policy for
the shaped reward function will also be the optimal policy for the original reward function. The
accompanying theory shows that policy invariance is guaranteed for a single agent MDP, and that
the Nash Equilibria does not change for competitive multiagent MDPs [7]. However, further theory
shows that a multiagent system can converge on a different joint-policy with PBRS, as the additional
reward alters agents’ explorations, which affect the experiences of other agents [33]. In the multi-
objective case, the theory shows that PBRS does not alter the true Pareto front [85]. Despite the
lack of a guarantee for joint-policy invariance, plenty of experiments empirically demonstrate the
efficacy of the PBRS framework applied to multiagent learning [16, 32, 35, 50, 88, 101, 113].
Potential based reward shaping requires a potential function that calculates the potential values
of different system states or agent observations. This function can be expressed as ®(s) if the
potential function is static [7], and ®(s,t) if the potential function is dynamic. This potential
function can be engineered using knowledge about the domain and target task [113, 141], generated
through counterfactuals [113], or generated from solutions gained from conventional planners [32,
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38, 50, 88]. While the potential function can essentially be arbitrary, the design of the potential
function does influence what policy or joint-policy is actually learned [16], even if it doesn’t change
the optimal policy [7], so this function must be designed with care.

The actual shaping function is defined as the difference of potentials between a new state and
old state. Following the example of a shaped term for keeping underwater agents near one another,
this approach would prevent agents from exploiting those proximity rewards. If an agent got close
to a second agent, each one would gain a positive reward from F, but if they remained close to
one another, they would receive no additional reward from F, as there would be no difference
in potentials. Potential Based Reward Shaping is defined mathematically through the following
equations, with Equation 2 representing Static PBRS, and Equation 3 representing Dynamic PBRS.

F(s,s') = y2(s') — ®(s) (2)

F(s,t,s',t') = y®(s',t') — ®(s,t) (3)

F(s,s'") and F(s,t,s',t') are the shaping terms, v is a discount factor, ®(s’) and ®(s',t’) are
the new state potentials, and ®(s) and ®(s,t) are the old state potentials. Notably, the rewards
collected through F' from reaching a terminal state in the MDP must sum to zero to maintain the
guarantees from PBRS [51].

3.1.2 Knowledge Based Reward Shaping Methods

Knowledge based reward shaping seeks to encourage useful behaviors during the learning process
by incorporating rewards for these behaviors into the shaping term. Proximity rewards for our
agents to stick together for more efficient observations are a good example of this type of shaping.
Many works experiment with incorporating knowledge based hueristics into the potential func-
tion for PBRS [34, 37, 101, 112, 113, 141]. When used effectively, PBRS with a knowledge based
potential function can lead to learning a better joint-policy than using just the system feedback G.
However, PBRS must be used with caution, as while the multiagent system learns a joint-policy
from the same set of joint-policies that would be learned otherwise through G, that joint-policy
will not actually be better if the potential function is not well designed [34, 101, 112]. Notably,
knowledge based shaping can be done outside of the PBRS framework and still improve perfor-
mance on the original task [138]. This is an effective method for reward shaping when we have
access to useful heuristics for solving the target task, both for providing additional signals with
reward sparsity, and making multiple reward signals more informative in multi-reward learning.

3.1.3 Plan Based Reward Shaping Methods

Plan Based Reward Shaping uses conventional planners to generate potential functions for use in
the Potential Based Reward Shaping Framework [32, 38, 50, 88|, with some works incorporating
these planners into multiagent reward shaping [32, 88]. In our underwater observation example,
we might plan a path from each agent to a POI, and use this plan to inform the shaping term
used in the shaped reward, encouraging our agents to follow the planned paths. STRIPS [41] is a
popular planner for these methods [32, 38, 50], but requires a well-defined goal state to be applied
effectively [50]. Alternatively, an abstract MDP can be learned from the original MDP and solved
as a means of generating a plan based potential function [88]. Using plan based reward shaping for
F directly, rather than in a PBRS framework, can also lead to better coordination [74].

This approach is effective in addressing reward sparsity if we are able to generate a plan, but
this comes with caveats. STRIPS creates local optima when there many valid plans [50], and
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the solution to an abstract MDP is not guaranteed to solve the original MDP [88]. Additionally,
these planners don’t consider multiple entities, causing conflicts in individual plans [32]. While this
approach has been shown to help in single-reward settings, there is little to no work exploring this
in multi-reward settings, where the target task might be more complex than hitting a particular
goal state. Perhaps these approaches could be further explored in a multiagent setting with the help
of multi-robot path planners [54, 56, 70] and multi-objective multi-robot path planners [82, 135].

3.1.4 Counterfactual as Potential

We can leverage counterfactuals to compute a potential function for multiagent learning. In Coun-
terfactual as Potential (CaP) [113], the potential function is defined as shown in Equation 4.

O(s) = G(s—;) (4)

®(s) is the potential function for agent i, and G(s_;) is a system reward with agent ¢ counter-
factually removed from the system. This encourages agents to seek out tasks that are not already
being done by other agents, as pushing another agent away from a task it was already doing would
reduce G(s—;). In the underwater observation example, this would encourage agents to seek out
POIs that have not already been observed by other agents.

CaP can be approximated to alleviate the potentially high computational cost of calls to G,
and so agents do not require access the functional form of G [84]. In sparse reward settings, CaP
will not help because it adds information based on a slightly cleaned G, and if the original G does
not contain any useful information, then the counterfactual G will not either. CaP has not been
tested in multi-reward settings, but would likely benefit learning similarly to other methods that
add information to the system reward so long as rewards are not sparse [85, 86].

3.2 Removing Noise

Noise in the system reward for multiagent learning comes primarily from G capturing feedback for
the entire system. From a single agent’s perspective, G is mostly noise from other agents operating
in the environment. By cleaning this signal, we can better isolate an individual agent’s contribution.

3.2.1 Difference Rewards

A difference reward is specifically designed to have a strong alignment with G and have a high
sensitivity to an individual agent’s actions [3-5, 20, 26, 113, 139, 141, 144]. By comparing the
actual system reward with a counterfactual system reward where that agent is removed from the
system, we can calculate a difference reward that captures that individual agent’s contribution to
the system reward. In the underwater observation example, we could remove an agent entirely from
the system to compute a counterfactual reward that would help us determine whether that agent’s
current observation is helping the system. This is formalized in Equation 5.

D, = G(Z) — G(Zfl U Ci) (5)

D; represents the difference reward for agent 4. z represents either a joint-action or sequence of
joint-actions, depending on whether this is used for MARL or a CCEA. G(z) represents the original
system reward, and G(z_; U ¢;) represents the system reward where agent ¢ took counterfactual
action(s) ¢;. While this approach does not address reward sparsity, it does help clean reward signals
in a multi-reward setting [101, 144]. Additionally D can be approximated using information local
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to each agent [104, 105, 124], and difference rewards have been shown to assist multiagent learning
in a variety of domains [4, 5], offering a popular solution to the credit assignment problem.

3.2.2 CLEAN Rewards

Coordinated Learning without Exploratory Action Noise (CLEAN) rewards drastically reduce the
noise in G [57-59]. With CLEAN, agents always take their best action in the shared environment.
To estimate the value of an exploratory action, an agent computes a counterfactual system reward
where that agent took the exploratory action, and compares this reward to the actual system reward
where the agent behaved according to its best policy. In the underwater observation example, this
would involve each agent having a full copy of the environment and other agents’ best policies that
the agent can take exploratory actions in. CLEAN is formalized in Equation 6.

Ci(a) = G(ag;a;) — G(a) (6)

Ci(a) represents the CLEAN reward, G(a,,;, ) represents the system reward from the ex-
ploratory action in the copied environment, and é(a) represents the actual system reward with
the agent’s actual action. CLEAN rewards have been shown to outperform difference rewards in
learning high performing joint-policies [58], but have yet to be tested in multireward settings. As
CLEAN is a noise reduction method, it would help a system clean multiple reward signals, but
not with learning from sparse rewards. The main limitation is that there is no approximation for
CLEAN, so it requires many calls to G and access to the functional form of G for each agent.

3.3 Combination Methods
3.3.1 D++4: An Extension to Difference Rewards

D++ extends difference rewards to tightly coupled tasks, where multiple agents are required to take
a joint-action together in order to receive a reward [107]. Feedback for these tasks is inherently
sparse as agents are unlikely to stumble upon the necessary joint-action to receive a reward. In the
underwater observation example, coral observations might have a tight coupling requirement of 3,
indicating 3 agents must observe a coral POI simultaneously in order to receive a system reward
for the observations. In this case, we would want to encourage individual agents to observe the
coral to maximize the chance that 3 agents hit the coupling requirement, rather than hoping that
3 agents will randomly stumble upon the correct joint-action simultaneously to observe the coral.
D++ gives us the stepping stone reward necessary to do this.

To calculate a D++ stepping stone reward for an agent, we consider a counterfactual system
reward where this agent has the “weight” of n additional agents and compare this to the actual
system reward to determine if this agent’s behavior would be beneficial with the help of other agents.
This is normalized by n to ensure this reward is a “stepping stone”, and doesn’t accidentally distract
agents from actually meeting the coupling requirement. This is formalized in Equation 7.

=1,...,

D} (i) = ()

This is calculated iteratively across a range of n additional agents to give an agent the maximum

stepping stone reward possible. D’ , (i) represents the stepping stone reward, G(Z“F(Ui:l,“.,n)i rep-

resents the system reward with the counterfactual agent(s), and G(z) represents the actual system

reward. The primary use case of D++ is in tackling tightly coupled tasks, but if an environment

does not have tightly coupled tasks, then D4+ will not help. This means D++ is not automatically
useful for learning with sparse rewards or multiple rewards.
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3.3.2 Difference Rewards incorporating Potential-Based Reward Shaping

Difference Rewards incorporating Potential-Based Reward Shaping (DRiP) gives an agent a differ-
ence reward plus a knowledge based potential reward [113]. In the underwater observation example,
this could mean calculating D for an agent’s observations by removing that agent, and then adding
a knowledge based potential reward based on spreading out to cover the most POIs. DRIiP is
formalized in Equation 8.

T'shaped = D(Sv a, S/) + 7@(3,) - CI)(s) (8)

All terms are the same as defined for difference rewards and PBRS. This method has been
shown to outperform both D and PBRS on their own in a multiagent setting [113], so it suffices
to say this approach would likely perform quite well in addressing sparse rewards (which PBRS
addresses well) and cleaning multiple noisy rewards (which D addresses well), but there is little or
no follow-up on this method beyond the original paper.

4 Impact of Learning on Leader-Follower Swarms

The swarm shepherding problem involves leaders that must guide a swarm of followers, and followers
that interact with each other based on simple local interactions. Many works in swarm shepherding
focus on a subset of this problem: learning in small leader-follower systems. We focus on the swarm
shepherding problem and how learning has been leveraged to solve this problem. The intersection
of learning, leader-follower systems, and swarms has incredible potential [99, 129] and offers many
interesting research directions that remain unexplored. A few works at this intersection focus on
expanding learning to large leader-follower systems, but many of the small scale experiments are
meant to demonstrate a proof of concept for swarm shepherding in larger systems. We explore both
learning-based and conventional methods for swarm shepherding to better understand the impact
learning has had on solving this problem, as well as hardware implementations and hardware-
focused work as relevant to generating new research directions.

4.1 The Swarm Shepherding Problem

Swarm shepherding is a specific problem where a swarm is split into two agents types: sheepdog
agents and sheep agents [80], which we consider as leaders and followers, respectively. The followers
follow a prescribed behavior based on simple rules to guide interactions with their neighbors.
Leaders must guide the followers from a starting location to a goal location, and do this through
local interactions with the followers, oftentimes repulsing followers to push them to the goal.

This problem in the Artificial Intelligence (AI) and Robotics literature takes inspiration from
the real life shepherding problem of instructing a sheepdog or team of sheepdogs to guide sheep
to a goal location. In the context of Al, this problem takes the form of simplified sheepdog agents
guiding sheep agents in order to explore and move around in an environment to accomplish spatial
tasks. Many works in the Al and Robotics literature focus on this problem in the context of a small
“swarm”, looking at sub-problems as small as one leader and one follower [117], but the idea is to
generate approaches that generalize to larger swarms [21, 129]. The objective is oftentimes to get
as many sheep agents to the goal location as possible, minimize the total distance from each sheep
agent to the goal location, or maximize the success rate of bringing all the sheep agents into a goal
location given some noise in the system. The solution to the problem is a control policy for the
sheepdog agents, which takes as an input either global or local information about the flock, and
outputs an action for the sheepdog agent to take towards guiding the sheep.
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These algorithms have been primarily tested in 2D particle environments. In these environ-
ments, each agent has an (x,y) position, and moves according to a (dx,dy) at each timestep. In
particle domain experiments, sheep have policies based on two behaviors: attraction and repulsion.
If other sheep or shepherd agents are too close, then a sheep agent will be repulsed by those agents.
Otherwise the sheep is attracted to either agents within an observable radius or the n nearest sheep
agents in the flock. A repulsion vector and attraction vector are summed together to determine a
sheep agent’s action. The shepherds usually have access to precise global information about the
flock and the goal location, though there are studies that explore this problem with shepherds using
local rather than global flock information. Most hardware tests are performed with two-wheeled
differential-drive mobile robots, and the algorithms tested on hardware are simpler than algorithms
that have been tested in these simulated particle environments.

Many early approaches to the swarm shepherding problem rely on hand coding different behav-
iors for the sheepdog agents and specifying conditions for when to switch between these different
behaviors [80]. These approaches have been quite popular from the late 1990’s through the late
2010’s [77, 78, 131, 132]. However, more studies in swarm shepherding algorithms started us-
ing learning based approaches in the late 2010’s and early 2020’s [1, 63, 149]. These approaches
experiment with many learning algorithms, from Q-learning and deep reinforcement learning to
evolutionary algorithms and differential evolution, as well as different learning methodologies such
as curriculum learning and inverse learning. We explore how early works attempted to hand-code
good shepherding policies for shepherd agents, how learning based approaches expanded the ca-
pabilities of these shepherd agents, and different attempts at solving this problem in hardware.
Throughout this review, we address the limitations of the different approaches.

4.2 Hand-Coded Sheepdog Policies

A) GCM Targeting B) Zig-Zagging C) Circling

Fujioka and Hayashi Fujioka and Hayashi Algorithm from Lien et al. Bennett et al.
Illustrated by Long et al.

target target

Figure 2: Different approaches to swarm shepherding, with credit to authors for illustrations.

Many conventional approaches to the swarm shepherding problem take direct inspiration from
the real-life problem of sheepdogs guiding a flock of sheep to a goal location. Humans have been
using sheepdogs for hundreds of years, and have documented what behaviors are useful for assessing
the effectiveness of a sheepdog in shepherding [125], making this an intuitive starting point for
generating good leader policies. These behaviors have been developed over the course of many
generations of people documenting what has worked effectively for shepherding with sheepdogs,
making this quite a rich starting point for solving the more general swarm shepherding problem.

There are three types of approaches to shepherding based on hand-coded control policies, as
illustrated in Figure 2. The sheepdog agent (or agents) first positions itself behind both the sheep
agents’ global center of mass (GCM) and goal location.
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The first type of approach then has the sheepdogs move directly towards the GCM in order to
push the sheep towards the goal location [44, 92, 132]. These approaches come with the limitation
that if the flock does not have strong attraction vectors between the sheep agents, then the flock
disperses when the sheepdogs approach [14]. In some of these approaches, the sheepdog policy
includes a mechanism for switching from driving the flock to gathering individual sheep agents if
they do begin to disperse [44, 92]. The second type of approach addresses the problem of poor flock
cohesion by pushing the sheep agents forward by zig-zagging side to side behind the flock or in a
v-shape partially encircling the flock [43, 44, 78]. This helps to keep the flock together by pushing
any sheep agents that start to stray from the flock back towards the center of the flock. However,
these approaches can still fail to maintain flock cohesion depending on how far the sheepdogs move
side to side and how far the v-shape extends around the flock. The third type of approach is
for the sheepdogs to alternate between clockwise and counter-clockwise circles around the flock
while simultaneously drifting towards a goal location [14]. This better addresses flock cohesion by
ensuring coverage of the entire flock, but does require an assumption of how big those circles should
be.

The major limitation of these conventional approaches is they all require quite specific and
extensive domain knowledge in actually designing a control policy for the shepherd agent, requiring
extensive parameter tuning to work properly [36, 61, 62]. They are also quite slow to develop
and improve as there are years between publications that tweak previous approaches in order to
maintain better flock cohesion, speed up shepherding, or achieve higher success rates in shepherd-
ing. Additionally, approaches need to be tweaked in order to accommodate different numbers of
sheepdogs [77, 78]. The creativity and complexity of these algorithms is quite limited because even
the simpler implementations require extensive tuning to work properly, and any complexity must
be explicitly known and encoded into the sheepdog agents’ behaviors by a person. As we will see
with learning based methods, neural networks do not have this limitation and can capture plenty
of complexity that can even solve more challenging variations of the swarm shepherding problem
that these hand-coded approaches cannot.

4.3 Learning Sheepdog Policies

There are three main approaches to solving this problem with learning. There is an important
distinction that needs to be made here that none of these approaches are multiagent learning, with
the exception of one paper which we discuss separately. These approaches use a single learner that
learns how to map a single sheepdog observation to a single sheepdog action. This learner learns one
policy that is copied and tested across all of the sheepdog agents. Different approaches experiment
with Q-learning, deep reinforcement learning, and evolutionary algorithms, but the real delineating
factor between the approaches is the methodology behind what the algorithm is learning and how
the learning is structured.

4.3.1 Machine Teaching

The first approach stems from Abbass’s work in “machine teaching” [2], which is curriculum learning
with elaborate and intentional curriculum design. The idea is to break down the overall task of
shepherding into sub-tasks and skills [24, 46, 63]. Instead of learning the full control policy at once,
the learner learns how to accomplish sub-tasks that are designed to hone certain skills associated
with good shepherding, such as driving and gathering as mentioned earlier. This involves the
learner learning to associate observations with the best actions by interactions between the learner
and the environment. Whereas hand-coded sheepdog policies require adjustments to be made in
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scaling up the policies to multiple sheepdogs, this approach has been demonstrated to be successful
in learning a good sheepdog policy for problems involving multiple sheepdog agents without needing
adjustments based on the number of sheepdogs [63]. However, there is a fundamental limitation
to this: while this machine teaching approach does make it possible to learn a control policy,
this approach does require curriculum design that inherently encodes biases about how the learner
should solve the problem, potentially limiting the creativity of the learned solution. This is more
like learning to do what we’ve already been doing more efficiently, rather than trying to learn a
fundamentally better control policy.

4.3.2 Apprenticeship Bootstrapping

The second approach builds on machine teaching, but instead of the learner learning through
interactions with the environment, this approach uses “Apprenticeship Bootstrapping” (AB) [95,
97]. AB is quite similar to inverse reinforcement learning [10], where the learner learns to mimic an
existing control policy rather than generating one from scratch. This approach still breaks down
the overall task into sub-tasks and skills, but a person then controls a sheepdog agent in the 2D
particle environment to accomplish these different sub-tasks [96]. This is used to generate training
examples for the learner to learn from in machine teaching. Rather than learning each sub-task
from scratch, the learner learns to mimic the control policy of a person solving the sub-task. While
this approach does speed up learning by not requiring random exploration from the learner in the
environment, this approach does further constrain the creativity of the learner by requiring that
the learner mimic an underlying control policy generated by a human teacher.

4.3.3 No Machine Teaching or Apprenticeship Bootstrapping

The third approach does not use any kind of curriculum or human generated examples. This is
learning in its simplest form where the learner is simply released upon the target task and must
learn to solve it through trial and error [13, 30, 129, 149]. Studies using this approach are just as
successful as the previous more complex approaches, but have only been explored more recently.
This is likely because Abbass introduced machine teaching [2], and went on to publish seminal work
in learning-based swarm shepherding [24, 46, 63], creating a strong bias towards machine teaching
for these early learning methods. The learning methods which do not require a curriculum or human
examples have been shown to learn better control policies than hand-coded methods in the presence
of increased noise in agent actions [30], and have even been able to solve variations of the swarm
shepherding problem previous approaches have not explored. Zhi et al. recently published work
using a deep reinforcement learning approach to learning how to guide the flock around complex
obstacles that required nontrivial navigation [149]. The big advantage of this approach is that it
does not require any kind of domain expertise or curriculum design in order to be successful, and it
actually calls into question whether the other approaches are necessary in the first place. Perhaps
a synthesis of these different methods would enable sheepdog agents to perform even more complex
variations of the swarm shepherding task, but this has yet to be seen.

4.3.4 Multiagent Learning

Looking at swarm shepherding through the lens of multiagent learning, as far as we are aware,
has only been addressed in Nguyen’s work [99], which provides a rich gap for further exploration
with multiagent learning based methods. Nguyen et al. define individual reward functions for five
shepherd agents so each agent learns a unique policy. These functions are designed depending on
assigned positional roles. Each shepherd is responsible for covering a specific portion of the flock:
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upper-left, lower-left, lower-middle, lower-right, and upper-right. This creates a v-shape around the
flock, similar to earlier methods that trace a v behind the flock, but this covers several portions of
the v at once. Particle swarm optimization is used to solve for the weights of the neural networks as
opposed to an evolutionary or reinforcement learning algorithm, and each network only has a single
hidden layer. There is plenty of room to expand this work. This does not leverage the advances
in the multiagent learning literature that focus on aligning individual reward functions with the
system reward, like difference rewards. Additionally, this method is limited to five roles, and the
authors claim this could be expanded to larger swarms by assigning multiple sheepdogs to each
role, but this would not be as effective as allowing further specialization amongst sheepdogs. While
this does demonstrate that multiagent learning has a place in the swarm shepherding problem, this
work stops short of showing how multiagent learning might be leveraged in order to tackle more
challenging variations of the swarm shepherding problem.

4.4 Hardware Implementations

While many approaches have been validated in simulation with simple particle agents, few have
been validated in hardware. Hardware implementations of swarm shepherding are tested on simple
versions of the swarm shepherding problem, and they use far simpler algorithms than the ones
tested in the particle domain [21, 103, 117, 132]. One study from 1999 by Shultz et al. incorporates
learning into their hardware implementation [117]. This study only used one sheepdog robot and one
sheep robot. While this is excellent pioneering work, we now have far more sophisticated learning
algorithms, swarm shepherding algorithms, and robotics hardware. A similar study conducted with
modern hardware and learning algorithms would address a large gap in research literature, and may
even be successful with far larger numbers of sheepdog and sheep robots.

A notable hardware study by Celikkanat et al. [21] used 7 kobots (two-wheeled differential-
drive mobile robots) for a leader-follower task, with up to 100 in simulation. Each kobot has 8
IR sensors placed radially around the base, and a magnetic compass sensing heading. Each kobot
(both leaders and followers) repulsed the nearest kobots, aligned heading with nearby kobots, and
was attracted to far away kobots. These repulsion, alignment, and attraction forces were summed
to obtain the high-level control command for each kobot. However, leader kobots had an additional
force pulling them towards the goal location, and Celikkanat et al. showed that only a minority
of informed leaders can guide the entire swarm to a goal location, which is consistent with similar
studies [129]. Their unique contribution was in showing how their algorithm would be deployed on
hardware. Note that the algorithms used by Celikkanat et al. were quite simple compared to what
we discussed above, so there is plenty of room here to test whether the more complex shepherding
algorithms would work on hardware, or what gaps would need to be addressed to scale them up to
hardware tests.

Several studies look into tackling more hardware specific problems in developing these algo-
rithms, but stop short of hardware testing. This includes designing algorithms that can work with
limited local information as opposed to global swarm information [100], that use computer vision
for sheepdog observations [109, 128], and that are implemented on simulated UAVs (Unpersoned
Aerial Vehicles) guiding UGVs (Unpersoned Ground Vehicles) [22, 79, 81, 96]. There is plenty of
potential here for addressing gaps for hardware implementations, especially in using local limited
information or computer vision for sheepdog observations, as oftentimes hardware implementations
involve working with limited information based on sensor readings, and computer vision for high-
level perception information. The gap here is testing these approaches on hardware to analyze the
robustness and pitfalls of these approaches in the real world.
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5 Synthesis/Research Directions

All of these research directions apply reward shaping to a multiagent learning approach to the
swarm shepherding problem, where each sheepdog, or “leader”, learns its own unique control policy.
Direction 1 focuses on credit assignment, direction 2 focuses on hardware analysis, and direction 3
focuses on learning with local information.

5.1 Difference Rewards For Multiagent Swarm Leaders

Neither reward shaping alone nor swarm shepherding can coordinate a swarm to achieve a complex
objective that requires tight coordination on multiple tasks simultaneously. A purely multiagent
learning approach, even with shaped rewards, fails to scale up to the large number of agents in a
swarm. On the other hand, a swarm shepherding approach only works to guide the entire swarm
to achieve one task, and does not have any way of splitting up the swarm to tackle multiple tasks.

This research direction investigates how to integrate difference rewards into each leader’s indi-
vidual reward signal. The challenge here is to define a suitable counterfactual for the difference
reward to not only capture the leader’s direct contribution to the system (which is what the stan-
dard counterfactual does), but also capture how that leader influenced followers’ contributions to
the system. This will make it possible for leaders to learn to specialize in different aspects of the
swarm’s objective, making it possible to intelligently split the swarm to investigate various points
of interest simultaneously.

5.2 Hardware Analysis of Complex Shepherding Algorithms

There is a large gap in the swarm shepherding literature in testing the more complex shepherding
algorithms on hardware, bringing into question how effective these algorithms would be on real-
world robots. Many algorithms do not consider the complexities of robot dynamics in agents’
motion models nor the noise from the inherent uncertainty in real-world sensing and actuation. A
flock of turtlebots would serve as an excellent testing platform, with an overhead camera looking
down to gather global flock information for shepherding. Turtlebots come with the added benefit
of strong support for simulation for algorithm validation before the big leap to hardware. The
assumption from conventional methods that an agent can move holonomically by a (dx,dy) breaks
down on these differential drive robots, so there will be inefficiencies and possibly failures from
these methods even without considering real-world uncertainty. We would use this platform to
analyze how conventional and learning-based methods compare on actual hardware, with a focus
on shepherding success rates, and time to shepherding completion for these different approaches.

This research direction explores how to integrate probabilistic estimates into reward shaping
in order to address the shortcomings of these algorithms faced with real world uncertainty. With
plan based reward shaping, we could integrate a plan generated from a conventional shepherding
approach into a learning-based approach. This plan would have to be probabilistic to reflect the
system’s uncertainty, representing the probability that following a conventional approach will result
in successful shepherding. The learning-based approach would use experiences from the real world
to determine when following the conventional approach is actually the best action versus when it
is best to perform a non-trivial learned action.

5.3 Learning with Local Information

Many swarm shepherding approaches assume that the leader agents have access to global informa-
tion about the swarm, but this will not be the case in many shepherding applications. Instead,
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leader agents will need to be able to guide the swarm only with information they can gather from
local observations.

This research direction investigates how Potential Based Reward Shaping could help leaders
identify which followers have the most potential to impact the system. For instance, a leader could
generate a null counterfactual for a specific follower within its observation radius to determine how
valuable it is for the leader to guide that follower. This is similar to Counterfactual as Potential,
but instead of trying to capture the potential of the entire system with one agent removed, we are
concerned with capturing the potential of one non-learning follower agent, which is not trivial. This
potential might be estimated by a leader counterfactually treating that follower as a copy of itself
and computing what that follower’s contribution would be in that case. Estimating this potential
correctly would make leaders more efficient by incentivizing leaders to guide specific followers rather
than all nearby followers.

6 Societal Impact

In considering the societal impact of intelligent swarm systems, it is critical to consider different
political and economic incentives, and how these systems might be used to tackle global problems.

6.1 Automation of Warfare and Mass Surveillance

Intelligent swarms currently have a spot in automated warfare in performing reconnaissance [75,
134]. A swarm of UAVs constitutes a practical system for performing reconnaissance with little risk
to any people operating the swarm, as the individual UAVs would be the targets of any resistance.
This gives a military advantage to a country that can effectively deploy these swarms, offering
a political incentive for country leaders to develop these systems [123]. While this may in the
short-term remove some soldiers out of harm’s way in warfare, this also promotes warfare in the
long term. The more warfare is automated, the less the leaders of a country have to give up
political power in order to gain support from their constituents, as explained in Selectorate Theory
from political science [52]. They are not endangering people; they are endangering robots. This
brings down the political cost of warfare, and sways the balance of power towards countries with
many automated systems for warfare. These countries could enter conflicts with greater triviality.
Intelligent swarms could later be equipped with weapons as the technology is developed further,
which brings into question whether an automated swarm of killing robots is under any circumstances
ethically permissible.

While swarm literature tends to stray away from discussions of automated warfare, there is
no shortage of papers discussing improvements to swarm algorithms for better surveillance [115,
146]. Even with the proposed research directions focused on moving swarms to “goal locations”
or “points of interest”, one could simply replace these with “people of interest” and these research
directions become relevant to surveillance. A surveillance system leveraging a swarm of UAVs
could be deployed to monitor large populations by a government with a strong interest in keeping
its population under control. This would make quite an effective tool in an oppressor’s toolbox for
suppressing dissent by stopping any resistance before it can even be organized.

6.2 More Efficient Transportation

Not all intelligent swarm systems are poised to create a dystopian world - some applications are
simply mundane. There are strong economic incentives for intelligent swarms to be used for better
coordination of air traffic control and autonomous vehicles [11, 87, 122]. Leader-follower systems are
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especially applicable here, as one air traffic control tower (a leader) may not have any control over
what other air traffic control towers (followers) actually do, but it may be possible to intelligently
predict how to influence air traffic given what these other towers are doing. Similarly, a fleet of
autonomous vehicles or intelligent traffic lights (leaders) may not have control over how human
drivers (followers) drive, but could influence these drivers to bring down traffic congestion and
improve driving efficiency. Such systems have the potential to make our daily lives more efficient,
though not necessarily easier, as productivity expectations will rise to meet that increased efficiency.
Additionally, there is the question of whether improving these systems is even a good idea in the
first place. In the case of autonomous vehicles, we may be much better off with better public
transportation that supports walkable cities rather than systems that force transportation to be
car-dependent [27, 90, 136]. There is a glimmering hope here that these intelligent swarms could be
used to better coordinate healthcare services as the same leader-follower ideas apply to a distributed
network of healthcare providers [118], but the formulation for this is a bit more nebulous.

6.3 Addressing the Climate Crisis

There is hope for an indisputably positive societal impact from intelligent swarms. While there
are not yet strong economic or political incentives for this technology to be deployed in order to
address the climate crisis, this may change as this problem becomes more pressing [94, 126].

Consider the problem of wildfires that have become more prevalent. Intelligent swarms have
the unique capability of autonomously performing complex coordination tasks in many places si-
multaneously. In the case of wildfires, a swarm of UAVs could provide valuable intel on which
areas require immediate attention, and make intelligent decisions about where to focus observa-
tions [114, 130]. Similarly, in search and rescue operations arising from fires, floods, earthquakes,
and winter storms, such a swarm would be capable of covering a large space quickly [9, 28], and
could even be retrofitted to deliver supplies to those in immediate need [12].

We can have hope that these systems could also be used to better understand and clean our
oceans in order to preserve and heal them [8, 64, 91, 147]. An intelligent swarm could cover a far
larger area than a single robot exploring oceans or tracking natural phenomena. These swarms
would also be effective in collecting trash from our oceans [93, 133], for which there are already
existing robots capable of collecting ocean trash [60]. Similarly, a swarm could help with cleaning
an oil spill [147], where many robots autonomously cleaning a large space in the ocean would be far
more effective than trying to perform it all manually. Admittedly, these systems are best suited for
providing band-aid solutions to these problems rather than tackling the root problem of building
more sustainable practices for life on Earth, but these problems do need to be addressed.

7 Conclusions

This work outlined the state-of-the-art for reward shaping in multiagent systems, as well as the
impact of learning in the leader-follower system of swarm shepherding. By pulling inspiration from
both of these fields, we propose three novel research directions focused on addressing specific gaps
at the intersection of both fields. The first is to use credit assignment from reward shaping to split a
leader-follower swarm across various tasks. The second is to analyze state-of-the-art algorithms on
hardware and explore probabilistic reward shaping as a means of better adapting these algorithms
for the real world. The third looks at how reward shaping might improve the state-of-the-art
for coordinating a leader-follower swarm with only local information. Intelligent swarms have a
strong potential to do plenty of harm, but there is hope these systems could be deployed to address
existential challenges.
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