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ABSTRACT
Coevolutionary agents offer new solutions to domains such as air
traffic control, autonomous vehicle management, and deep ocean
exploration where multiple decision makers need to coordinate to
satisfy a system objective. Agents fail to coevolve useful policies as
the number of agents in the system increases due to the challenge
imposed by each agent learning from a systemwide feedback signal.
Structural credit assignment techniques provide some relief, as they
distill system feedback into cleaner, individualized learning signals
for each agent. However, these techniques struggle to learn tightly
coupled system objectives, where several agents must discover a
sequence of joint-actions together in order to receive a positive
feedback signal. In this paper, we introduce structural credit assign-
ment for team "leaders", learning agents which are accompanied by
"follower" agents with pre-programmed simple behaviors. These
multiagent leader-based teams more easily learn joint-policies that
solve tightly coupled system objectives. We demonstrate that this
combination of followers and modified credit assignment results
in much faster and reliable learning than comparable credit as-
signment techniques without followers for tightly coupled system
objectives.
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1 INTRODUCTION
Multiagent systems offer the potential for designing for interactions
among various entities to solve complex problems, such as collabo-
rative excavation of remote dig sites. The ability for autonomous
agents to perform these tasks would allow for operation in danger-
ous and hostile environments, and solving larger problems should
only require using more agents to complete a given task.
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However, the difficulty lies in the ability for agents to scale on
cooperative tasks. As the number of learning agents increases in the
system, the learning signal directing each individual agent becomes
weaker, and the likelihood of the agents discovering an effective
joint policy quickly diminishes.

At the core, the issue is one of providing enough information
to agents to correctly learn how to effectively cooperate. Carefully
designing reward structures can help with this by making sure
that agents receive adequate information, such as how difference
rewards approaches the issue. By focusing designing the reward to
tell an agent how they contributed to the system, rather than how
the system performed, an agent can more clearly understand how
they might better act.

These techniques require computing such a reward for every
agent in the system leading to a dramatic increase in computation
requirement for coordinating joint actions between a large number
of agents. This assumes that the agents are even able to learn from
the shaped reward, which is itself not always valid. Difference
rewards, for example, fails on tightly coupled tasks, where multiple
agents must act in tandem to achieve a system reward.

Multifitness learning addresses some of these issues, namely
with respect to an exponential joint-action space, by learning not
individual policies, but by instead selecting from a set of already
known behaviors at any given point in time. This partially sidesteps
the problem by reducing the action space of all individual agents,
thereby making the learning problem easier for the agents. The
problem with such an approach is in requiring these behaviors to
be known beforehand. And then, even if they are able to be known,
each agent is still learning individually, meaning that multifitness
learning only alleviates the issue of an individual agent learning in
a complex environment rather than directly addressing the issue of
a large number of simultaneous learners.

In this paper, we blend ideas from both of these approaches to
introduce structural credit assignment for team leaders where a
portion of the agents are "followers" with preset policies and the
"leaders" must learn to complete system tasks as well as influence
followers to help complete system tasks. Assigning the followers
with a definite and simple policy allows for injecting knowledge
about the structure of the problem. This also shifts the learning
problem from many agents learning to cooperate effectively in a
highly non-stationary environment to a less non-stationary prob-
lem of leaders guiding followers to accomplish the requisite task.



The contributions of this work are to:

• Provide a mechanism for reducing the complexity of inter-
actions between agents

• Derive amethod for calculating team contribution in a leader-
follower paradigm

Reframing the task in such a way, coupled with the shaped
knowledge regarding the reward and problem, allows the agents
to learn a more optimal solution faster than agents trained only
with shaped rewards or those learning to select between policies.
Additionally, this approach is able to continue to solve problems
requiring coordination between many more agents beyond those
capable of the other methods described.

In the following sections, we provide background knowledge
required to understand the approach in section 2, followed by a
more in-depth explanation of the approach and experimental setup
in section 4. Section 5 gives the results and analysis of the experi-
ments, and section 6 provides concluding remarks along with steps
for future work.

2 BACKGROUND
2.1 Swarm Shepherding
The swarm shepherding problem is one where one class of agents
referred to as "sheepdogs" must learn to guide another class of
agents referred to as "sheep" [9]. Existing approaches generally
formulate this problem as a single-agent learning problem, where
the sheepdogs are separate entities, but each sheepdog is learning
the same policy [5, 8, 16].

Hussein et al and Gee et al both take a curriculum based ap-
proach to learning policies for the sheepdogs, indicating that the
shepherding problem oftentimes suffers from uniformative rewards
that must be addressed by clever learning approaches [5, 8]. Nguyen
et al takes a multiagent learning approach to learning policies for
sheepdogs, where several policies are learned according to where a
sheepdog is relative to the herd [11]. While this approach begins to
address the challenge of learning individual policies for individual
sheepdogs, it does not fully commit to experimenting with every
sheepdog learning its own policy.

Tuzel et al frames the swarm shepherding problem as a problem
of learning based leadership [16], which is similar to the problem
we address in this paper. Tuzel successfully used an evolutionary
approach to learn a policy for a class of "leader" agents that guided
a class of "follower" agents to a goal. We scale up this approach
to include individualized policies for leaders, and to solve more
complex objectives with less informative feedback.

2.2 Multiagent Learning
Multiagent learning problems typically involve multiple agents,
each with their own observation and action spaces, learning their
own individual policies in a shared environment as part of a mul-
tiagent team [15]. One of the primary challenges in multiagent
learning is distilling a system wide feedback signal into useful feed-
back for individual agents. A team may perform well overall, but
this does not mean that each agent performed well. Reward shaping
techniques such as structural credit assignment begin to address

this problem [1, 3, 10, 14]. Difference evaluations in particular com-
pare the system’s performance against the performance without
a particular agent to determine the impact that agent had on the
system [1].

While these techniques help to distill system feedback into in-
dividualized agent feedback, they generally do not scale well with
tightly coupled team objectives, where several agents must stum-
ble upon the correct sequence of joint-actions in order to satisfy
that objective. This problem is further exacerbated when feedback
is sparse and uninformative. Rahmattalabi et al extend difference
evaluations through D++ to offer "stepping stone" feedback for
an agent if it is partially satisfying a tight coupling requirement
[12]. Unfortunately, calculating these "stepping stones" can be quite
computationally expensive compared to calculating the standard
difference evaluation, especially as we increase the coupling re-
quirement.

2.3 Cooperative Co-evolution
Evolutionary algorithms are based on the ideas of natural selection
and that good performing individuals will tend to continue on
and produce better solutions over generations [17]. In the single
agent case, a population of agents is evaluated on a task based on
some fitness function. Their relative fitnesses are used to select
individuals to continue on to a future iteration. At some point in
this process, the individuals are mutated in some fashion so as to
produce a slightly different solution. The process then continues for
a future generation, and the expectation is that the overall fitness
of the population of solutions will improve from generation to
generation.

When applied to a multiagent setting, specifically for cooperative
tasks, the fitnesses are no longer based solely on the performance of
the individual, but on the team of individuals [2, 6, 18]. Evaluating
an individual is no longer based solely on its own fitness, but on
the fitness of the team it is a part of during evaluation. Care must
be taken so as to not penalize an agent for its teammates while also
capturing how it performed as part of the team. Further, the evolu-
tionary algorithm itself must be modified to account for learning
with multiple agents, rather than just one. Instead of tracking a sin-
gle population of policies for an agent, a cooperate co-evolutionary
algorithm tracks one population for every agent on the multiagent
team.

2.4 Neuroevolution
Neuroevolution is one such manner for altering neural networks
through an evolutionary algorithm. By viewing the networkweights
as characterizing the policy performance, the weights can be mu-
tated in order to generate a slightly different solution from an
existing solution [4, 7, 13].

This method of mutation allows the new policy to be viewed as a
new individual to be added to the population of solutions for a given
agent. The mutated policy is added alongside the previous policy,
and thus it does not destroy partial solutions between generations.



Figure 1: Arctic Monitoring Environment: A homogenous
team of research vessels must coordinate to observe several
iceberg POIs with a tight coupling requirement. In this ex-
ample, 3 vessels are required to simultaneously be within
a POI’s observation radius for that POI to be observed, and
this team successfully observes all POIs.

3 PROBLEM FORMULATION
3.1 Arctic Monitoring Environment
We frame our contribution using the Arctic Exploration Environ-
ment, shown in Figure 1. A team of homogeneous research vessels
must coordinate on a tightly coupled arctic exploration task to ob-
serve as many Points of Interest (POIs) as possible. The research
vessels start with no prior knowledge of where POIs are, or how
many POIs there are to observe. There is no direct communication
between research vessels beyond limited sensing of other research
vessels’ positions. The team must learn to coordinate to maximize
a team objective function based on observing as many POIs as
possible.

The primary challenge of this environment is that several re-
search vessels must observe a single POI simultaneously for that
POI to count as "observed" by the team. The number of research
vessels required to observe a POI is referred to as the coupling re-
quirement. As this coupling requirement increases, the probability
of the team randomly stumbling upon a sequence of joint-actions
to observe even a single POI becomes vanishingly small.

The research vessels and POIs are situated on a continuous 2D
plane. Each vessel has a position, velocity, and heading which a
vessel can influence through its actions. Research vessels move by
accelerating forward or backward, and turning left or right. We
impose kinematic constraints on the vessels such as a maximum
linear velocity, linear acceleration, and angular velocity. Each POI
has a fixed position in the plane. The initial state of research vessels
and POIs depends on the particular experiment. Research vessels
positions, velocities, headings, and POI positions along with the
number of research vessels and POIs constitute the initial state.

The observation space for a research vessel is split into 4 quad-
rants. The quadrants are relative to the research vessel’s heading.
A research vessel has 2 sensors in each quadrant: 1 for sensing
research vessels density in that quadrant, and 1 for sensing POI
density. Density is the average inverse distance to all entities of a
class within a quadrant. For example, POI density in a research ves-
sel’s front right quadrant is the average inverse distance to all POIs

in that quadrant. This makes it so the POI density sensor increases
if there are many POIs in a quadrant, or if POIs are nearby. The
same logic applies to sensing other research vessels. With 2 sensors
in each quadrant, this makes the observation space 8 dimensional.

The action space of a research vessel is a desired velocity and de-
sired heading relative to the research vessel’s current heading. This
makes the action space 2 dimensional. The velocity and heading
commands run through a proportional controller which accounts
for the kinematics of the research vessel to command a linear ac-
celeration and angular velocity.

3.2 Team Objective Function
𝐺𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 is a sparse feedback function with discrete "steps" for
evaluating how well the team performed. A POI counts as observed
if ≥ 𝐶 agents are within the POI observation radius at any time
during the episode, where 𝐶 is the coupling requirement. This
gives the team very little information to learn from, making it so
the team has to stumble upon an entire sequence of correct joint
actions to get a nonzero, positive feedback signal. We formalize this
in Equations 1 and 2 for a case where𝐶 = 2 with additional context
supplied by Equations 3 and 4.

𝐺𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (𝑧) =
𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑃𝑡𝑜𝑡𝑎𝑙
(1)

where 𝑧 is the joint-trajectory of the team, 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the num-
ber of POIs observed by the team, and 𝑃𝑡𝑜𝑡𝑎𝑙 is the total number of
POIs in the environment.

𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
∑︁
𝑖

max
𝑡

(
∑︁
𝑗

∑︁
𝑘

𝑂1
𝑖, 𝑗,𝑡𝑂

2
𝑖,𝑘,𝑡

) (2)

where𝑂1
𝑖, 𝑗,𝑡

and𝑂2
𝑖,𝑘,𝑡

are boolean values indicating whether the
𝑖-th and 𝑘-th agents were within the observation radius of the 𝑖-th
POI at step 𝑡 . That is,

𝑂1
𝑖, 𝑗,𝑡 =

{
1, if 𝜎𝑖, 𝑗,𝑡 ≤ 𝜎0 and 𝜎𝑖, 𝑗,𝑡 < 𝜎𝑖,𝑙 , ∀𝑙 ≠ 𝑗 ,
0, otherwise,

(3)

𝑂2
𝑖,𝑘,𝑡

=

{
1, if 𝜎𝑖,𝑘,𝑡 ≤ 𝜎0 and 𝜎𝑖 .𝑘,𝑡 < 𝜎𝑖,𝑙 , ∀𝑙 ≠ 𝑗, 𝑘 ,
0, otherwise.

(4)

where 𝜎𝑖, 𝑗,𝑡 is the distance from the 𝑖-th POI to the 𝑗-th agent at
step 𝑡 , 𝜎𝑖,𝑘,𝑡 is the distance from the 𝑖-th POi to the 𝑘-th agent at
step 𝑡 , and 𝜎0 is the observation radius of the POIs.

4 METHOD
4.1 Leaders and Followers
We tackle a system-wide multiagent learning problem by first split-
ting the team into "leaders" and "followers", as shown in Figure
2. Rather than each agent on the team learning a policy individu-
ally, the leaders are the only agents which learn on our team. The
followers on the team use policies that are preset based on some
expert knowledge of a behavior that would generally be useful in
tackling the overall system objective.



(a) Leader (b) Follower

Figure 2: (a) Leaders sense the density of POIs and teammates
in each quadrant. A learned policy commands a new desired
velocity and heading. (b) Followers calculate a vector sum
of attraction and repulsion forces from teammates in their
attraction or repulsion radii. The follower policy commands a
desired velocity and heading to align the follower’s trajectory
with this vector.

In our Arctic Monitoring Environment, we have the expert
knowledge that individual tasks are tightly coupled, and we know
the coupling requirement. Thus, we know that a generally useful
behavior for an agent would be to stay close to other agents. This
makes it easier for the team to satisfy the coupling requirement for
a POI when they get close enough to observe the POI.

We formalize this behavior in how a follower calculates its de-
sired velocity and heading. A follower is only influenced by team-
mates within its observation radius, and the follower does not have
the same observation space as a leader. However, a follower does
have the same action space of desired velocity and heading. To
calculate a desired velocity and heading, a follower decomposes a
sum of forces acting on that follower from nearby teammates. Two
forces act on a follower: repulsion and attraction. A follower has
an attraction radius the same size as its observation radius, and a
smaller repulsion radius. If a teammate is within a follower’s repul-
sion radius, then the follower is pushed away from that teammate.
If a teammate is instead outside the repulsion radius and within the
attraction radius, then the follower is pulled towards that teammate.
This makes it so that followers’ trajectories are malleable and can
be influenced by various teammates at once.

4.2 Difference Objective Functions
We experiment with various difference objective functions as learn-
ing signals for our leader agents. These difference objectives are
designed to better capture a particular agent’s contribution to the
team’s performance better than the team objective function. A dif-
ference objective is computed for an agent by calculating the team
objective function and subtracting the team objective function with
a particular agent removed from the system. We formalize this in
Equation 5.

𝐷𝑖 = 𝐺 (𝑧) −𝐺 (𝑧−𝑖 ) (5)
where 𝐷𝑖 is the difference objective function for agent 𝑖 , 𝐺 (𝑧)

is the team objective function for joint-trajectory 𝑧, and 𝐺 (𝑧−𝑖 ) is
the team objective function with agent 𝑖’s trajectory removed.

The interesting part about this difference objective that we exper-
iment with is how to properly compute 𝑧−𝑖 . In our leader-follower
team, only the leaders are learning, but they strongly influence the
trajectory of the followers. This makes it so that removing just a
leader’s trajectory when computing 𝐺 (𝑧−𝑖 ) may not capture what
the team objective function would have been without this leader.
We detail two different methods for calculating 𝐺 (𝑧−𝑖 ).

Leader Trajectory Removal: This is the baseline that we com-
pare our other methods against. With our baseline, we simply re-
move the trajectory of the leader, and do not try to account for the
impact the leader had on any followers.

Leader-Follower Trajectory Assignment:We assign follow-
ers to leaders such that there is a one to one mapping of followers
to leaders. One follower cannot be assigned to more than one leader.
To assign a follower to leaders, we track at every timestep what lead-
ers are within the observation radius of that follower. A follower
has a counter for every leader, and that counter is incremented
by 1 for every timestep the corresponding leader is observed by
that follower. At the end of the episode, we aggregate all of these
counters, and whichever leader has the highest counter is the one
that we assign that follower to.

4.3 CCEA with n-Elites Binary Tournament
We use a Cooperative Co-Evolutionary Algorithm for learning,
formalized in algorithm 1. We initialize 𝑁 populations of 𝑘 neural
networks, where we have 𝑁 learning agents, or "leaders", on a team,
and we have 𝑘 policies we are tracking for each agent. We start
the co-evolutionary process by evaluating all of the policies. To
evaluate policies, we randomly form 𝑘 teams of policies, with each
policy represented once across all teams. Each team is evaluated in
an episode of the arctic monitoring environment, and assigned a
fitness score according to the team objective function. At this point,
each policy on a team is assigned either the team fitness score or a
difference evaluation. This depends on the particular trial.

Algorithm 1 CCEA with n-Elites Binary Tournament
Initialize 𝑁 populations of 𝑘 neural networks as policies
for Generation do

/* Team Evaluation */
for 𝑖 = 1 → 𝑘 do

Randomly select policy from each population
Add policies to agents on team 𝑇𝑖
Simulate 𝑇𝑖 in environment
Assign score to each agent in 𝑇𝑖

end for
end for
/* n-Elites Binary Tournament */
for Population do

Initialize new, empty population
Add top n policies
for 𝑖 = 𝑛 → 𝑘 do

Compare 2 policies at random
Add highest scoring policy to new population
Mutate policy in new population

end for
end for



Once each policy has a score assigned to it, we downselect each
population of policies. For our downselection process, we run an
n-elites binary tournament, where n=1. We create an empty new
population, and add the highest scoring policy from the original
population. To fill out the rest of the population, we iteratively select
two policies from the original population at random, compare their
scores, add the highest scoring policy to the new population, and
mutate that policy in the new population. This process helps to
preserve the diversity of policies in the co-evolutionary process. We
repeat the evaluation and downselection processes for a specified
number of generations to learn with our CCEA.

4.4 Experiments
We test the performance of the leader-follower approach with three
agent and POI configurations to evaluate the ability of the agents
to learn to successfully learn to observe the POIs. These configura-
tions are additionally tested using the different reward structures
described in section 4. Each of the layouts were designed in or-
der tests how the agents learns to interact together to accomplish
a tightly coupled task. These are shown in figure 3. All the posi-
tions shown are drawn to scale with respect to the implementation
configurations.

Generally Forward: This configuration is meant as a simple
problemwhere the agents only need to learn how to move generally
forward to the POIs. Each POI has a coupling requirement of 3, and
each leader is positioned to be able to initially influence two other
followers, when using the leader-follower paradigm.

Strictly Forward: The next configuration makes the previous
configuration harder by removing the center two sets of agents and
POIs. This makes the problem harder by requiring the agents to
move in a much more directed direction that in the first configu-
ration. More explicitly, in the first configuration, the agents only
needed to move in roughly a forward direction to receive some
form of a reward. However, in this configuration, the agent must
move straight forward to observe the POI along its path.

Chaotic Interactions: The final configuration adds two more
agents to nearby each leader along with increasing the coupling
requirement to 5. Note that this increase is commensurate to the
additional agents added to the system, so each leader would still be
expected to guide a set of unique agents to observe a POI. However,
each follower is additionally influenced by the followers on either
side of it. In all, this presents a much more challenging problem to
the leader-follower paradigm specifically due to all of the additional
interactions between followers, other followers, and leaders that
impact the ability of the system to receive any system reward.

5 RESULTS
In this section, we analyze the ability of the various agent and
POI configurations to learn to solve the task using several reward
functions. In general, the agents using the leader-follower paradigm
were able to learn a more optimal joint policy faster and more
reliably than those where all the agents in the system were learning
agents.

(a) The simplest configuration
used to evaluate the agent and
reward structures. Each POI
has a coupling requirement as
3.

(b) The second configuration
removed the center two sets of
agents and POIs while keeping
the coupling requirement of
each POI as 3.

(c) The final configuration adds
two more agents nearby to
each leader position and in-
creases the coupling require-
ment of each POI to 5.

Figure 3: Each POI is marked as a grey ‘X‘ in a circle. The
blue triangles represent where the followers are placed in the
leader-follower paradigm. And the orange triangles denote
where the leaders are placed. When all agents in the system
are leaders, both the blue and orange triangles are evolving
their policies.

5.1 Generally Forward
The simplest configuration requires the agents to learn to move in
a general forward direction. For the system with all learners, the
problem is simpler due to the likelihood of three of twelve agents
simultaneously stumbling upon a POI. As for the leader-follower
paradigm, The mechanics of the follower updates would lead to the
coupling requirement being met if the leader modulates its speed
so as to not leave behind, or fall behind, the followers.

Even though the policy the leaders must follow is rather straight-
forward, they struggle to learn to observe all 4 POIs using the global
or difference reward signals, as shown in figure 4a. After 100 gen-
erations, they average observing less than a single POI. Contrasted
with this, the agents learning using the leader-follower paradigm
quickly learn to observe all 4 POIs using all of the reward functions.



(a) (b)

Figure 4: When using all leaders, the agents are unable to
learn to effectively observe more than a single POI on aver-
age. Whereas when using the leader-follower paradigm, the
agents are quickly able to learn to observe all of the POIs.

In fewer than 20 generations, they all observe at least 3, on average,
and they all consistently observe all 4 POIs within 40 generations.

This suggests that the learning problem required of the leader-
followers is simpler than the equivalent problemwhen all the agents
are trying to learn a joint policy from scratch.

5.2 Strictly Forward
In the second configuration, the center sets of agents and POIs
were removed. For both the all learners and the leader-follower
paradigms, this restricts the policies the leaders must learn. Same
as before, they must learn to move in a general forward direction.
However, in order to successfully receive any reward, they are not
able to deviate much from this forward direction to the reward.

When looking at the performance of the system using all leaders,
shown in figure 5a, the agents were almost never able to learn to
obtain any reward using any of the reward functions. This is largely
due to just how sparse any system feedback may be, as in order to
obtain any reward, three agents must coordinate simultaneously
over a period of time to reach the POI. Even if a single agent acts
in a correct manner, they may not receive any positive feedback as
their performance is intrinsically linked to the performance of the
other agents in the system.

(a) (b)

Figure 5: The ability of the all learners approach to fail to
solve the problem is more drastic than in the previous con-
figuration. Additionally, the leaders-followers paradigm con-
tinues to be able to perform well rather quickly, learning to
observe 3 of the 4 POIs on average withing 30 generations.

Switching to the leader-follower paradigm, shown in figure 5b,
the agents are able to use any of the reward functions to successfully
solve the task. However, the impact of the various reward struc-
tures is not as readily apparent based solely on the average reward.
Instead, when using the leader-follower trajectory assignment, the
variance of the performance of the system was significantly higher,
suggesting that this method may introduce noise in the system
under particular configurations. Looking further into why this may
be for this configuration, due to the environmental mechanics and
state representation, an agent is likely going to continue along their
initial policy after the first few time steps. During these steps, the
followers will adjust themselves to the directions of the leaders, and
so, for most time steps beyond this initial period, the observation
of the agent is not likely to change. They cannot see the POIs or
the other agents, and the followers will remain in a similar relative
location to the leader. Thus, when the leader-follower trajectory
assignment tries to account for the effect of the leaders and its
associated followers, it adds too much noise to the leader’s reward
as it assumes the leader is actively guiding the followers during
that entire trajectory. Instead, it is making slight nudges in the be-
ginning then allowing the followers to mostly follow their current
trajectory to reach the POI.

Compare this effect to the global reward and the leader trajec-
tory removal. The global reward is, by definition, aligned, but the
misalignment of the leader-follower trajectory assignment comes
from the agents having to focus more on their ability to shepherd
the followers in the correct direction. Relative to the leader tra-
jectory removal, removing both the leaders and the followers is
less sensitive to the actions of the leader itself due to a similar
cause, but instead of having to learn a slightly different functional
form, the reward structure introduces noise to the learning agents
through trying to model the effect of its actions on its followers. In
this configuration, the behavior the learning agents must exhibit
to accomplish the task is much simpler than potential tasks that
may require more explicit modeling of its impact on its assigned
followers.

5.3 Chaotic Interactions
The final configuration adds more agents to the system and in-
creases the coupling requirement of the POIs. With all leaders,
the difficulty in this configuration comes from the coupling re-
quirements of the POIs, while for the leader-follower paradigm,
the difficulty arises due to how learners must interact with the
followers. Specifically, while the followers are closer to the POI
than the leaders, the update rules of the followers will direct them
back towards the leader and away from the POI. But the followers
further away from the POI than the leader will move in the correct
direction needed to correctly help to observe the POI.

When all the agents are learners, due to the number of agents in
the system relative to the POIs, and that there is no restriction to
learners only observing a POI, there is a high likelihood of random
actions successfully causing the agents to observe the POI. This can
cause the agents to be able to learn a successful policy, but with a
rather large variance in the average policy performance.

Using the leader-follower paradigm, the agents learn about a
similar policy. The difference comes in that they learn this policy



(a) (b)

Figure 6: The all learners approach is able to solve the prob-
lem some of the time due to the number of agents in the
system and the likelihood that random actions might cause
enough agents to simultaneously be within the observation
radius of a POI. However, using the leader-follower paradigm,
the agents are able to learn at least a comparable policy, but
do so much faster and more consistently than when using
all learners.

much faster and more consistently. Effectively, the leader-follower
paradigm is able to simplify some of the chaos in the problem and
clean up the ability of the agents to discern how to act to learn to
solve the task. However, while these is a slight benefit of using the
leader-follower trajectory assignment, the global reward is able to
provide enough of a reward that the agents do not receive much of
a benefit in being able to better discern the effect of their actions
specifically within the context of its teammates.

The ability of the global reward to provide enough of a learning
signal to direct agent to solve the task suggest that the leader-
follower paradigm is powerful in simplifying the learning task
required of the agents to solve an equivalent problem, given they
are provided information about the structure of the task in the form
of the simple follower update rules.

6 CONCLUSION
The ability of leaders directing followers using simple pre-programmed
behaviors allows for simplifying the learning task and allows agents
to better make use of the information provided to them by the sys-
tem reward. Additionally, this manner of directing the followers
based the actions of leaders allows a designer to inject some knowl-
edge about the structure of the task to the agent. Thus, as the
number of agents required to interact in a system increases, the
agents are able to solve more complex problems faster than when
using all learners to accomplish the same task.

A trouble with this approach comes in as the number of followers
increases relative to the learners, as the learners must learn not
only how to accomplish the goal, but also how to shepherd the
followers along to aid the leaders in the required task. In this way, it
puts more onus on the leader to learn an effective policy. Still, even
as this ratio of followers to leaders is increased, the leader-follower
approach is able to find a similarly performant policy faster than
when using all learners.

Continuing on this work could further explore the effect of
greatly altering this ration of leaders to followers, or by requiring
setups where agents must learn to assert influence over followers at

different times in order to observe a set of POIs. This would likely
require a more informative difference reward in order to account
for this switching behavior. Another avenue might be to address
how this type of framework might be used with heterogeneous
agents. For instance, where the leaders are unable to directly ob-
serve the POIs and must rely on how their exert their influence to
cause the followers to observe the POIs. In these types of scenarios,
the reward provided to the learning agent is further removed from
its direct actions and makes the actual problem the leaders must
learn different than the task required by the system to receive a
reward.
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